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Abstract. The identification of musical instruments is important in au-
dio analysis this allows musical information to be retrieved and identified.
For this purpose, it is important to consider the processing of audio sig-
nals. In this study, we propose to use spectral parameters such as Mel Fre-
quency Cepstral Coefficients (MFCC), Mel Spectrogram, Chromagram,
Harmonic Percussive Index and spectral contrast to capture instrument
characteristics. These features model the timbre, harmonic content and
energy distribution essential for differentiation. Accurate extraction and
processing of these features is essential, as errors can compromise classi-
fication performance in complex, polyphonic soundscapes.
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1 Introduction

Instrument recognition is an important concern in audio analysis, especially
in music information retrieval, sound source separation and automatic music
transcription [15]. The issue is complicated by the fact that most audio signals
are polyphonic, i.e. they are a combination of two or more sources, in this case
instruments. For this reason, the majority of research divides the monophonic
and polyphonic cases into two distinct problems, with the principal objective
being to ascertain the instrument or the predominant instrument, respectively.

This is of particular importance given that the predominant instrument is a
powerful description of musical data that can be used to identify songs. The ap-
plication’s utility in identifying musical genres is noteworthy, particularly given
that certain instruments are often used as distinctive characteristics [4]. This is
a subject on which a substantial amount of research has been conducted.

In the case of polyphonic music, there is research by Han et al. [8], who
developed a deep CNN for instrument recognition based on Mel spectrogram
inputs and aggregation of multiple sliding window outputs on the audio data.

Another interesting research is [7] where the researchers proposed a method
for automatic recognition of predominant instruments using SVM (Support Vec-
tor Machine) classifiers trained with features extracted from real musical audio
signals. Similarly, in [2], an approach is proposed to automatically identify all
instruments present in an audio signal using sets of individual convolutional neu-
ral networks (CNNs) per tested instrument, which is a similar approach to that
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used by Avramidis K. et al. [1] who use RNN (recurrent neural networks), CNN
(convolutional neural networks) and CRNN (convolutional recurrent neural net-
works) to find the dominant instrument, similar to the work of Pons J. et al. [14]
who do the same using CNNs with MFCC.

In regard to the selection of parameters, the most commonly utilized are
the MFCC (Mel-frequency cepstral coefficient). However, as evidenced in [5, 6],
alternative options exist, including the MEL spectrogram, the Chromagram,
the Harmonic Percussive Index (HPI), and Spectral Contrast. In this study,
the aforementioned parameters are employed to identify the most significant
parameters for the developed model, which in this case will be a Support Vector
Machine (SVM).This is accomplished by employing specific algorithms, such as
Recursive Feature Elimination, or statistical measures like the ANOVA F-value,
to identify the most relevant parameters.

2 Methodology

This paper proposes a methodology to train an SVM for both monophonic and
polyphonic audio signals. This can be separated in three steps, the pre processing
of the signal, extraction of characteristics and the training of model. Each step
is relevant, because depending on the chosen parameters the performance of
the model can change significantly. In order to expose that, we separate each
step in different sub process, this can be seen in Fig. 1, where the three main
steps mentioned above are enclosed in a frame and there are the mentioned sub
process. Each of them is described in detail below.
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2.1 Signal Pre-processing

Signal pre-processing is a particularly important step as it prepares the signal to
extract its characteristics. In this step, the input signal is in its raw state, which
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usually means that it contains noise, has different scales, etc., so it is necessary to
normalize and filter the signal before analyzing it. This procedure makes possible
to observe the characteristics of the signals and to determine some properties for
their subsequent analysis, such as the selection of the amplitude of the windows
in which the analysis will be carried out.

Normalize and Silence removal. Normalization of the signal involves mod-
ifying its range to align it with the desired range, which in this case is [—1, 1].
This can be done through the expression (1):

_ Y
e = man(l) .

where y is the original signal, maz(|y|) is the maximum absolute value of the
signal and ¥, is the normalized signal.

Once the signal has been normalized, the next step is to trim the samples in
which the signal works with less than 20dB. In Fig. 2 you can see the normalized
signal and the signal after trimming the silences. This Fig. shows how the audio
signal of an instrument, in this case viola, changes when we remove the silence
spaces, which are especially noticeable at the beginning and at the end of the
original signal.
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Fig. 2. Original signal and signal resulting from the removal of silences.

Window and Filter. The selection of the window length is typically contingent
upon the filter selected from the signal, as both are employed to determine the
requisite frequency range for analyzing the interest patron. In this particular
instance, it is necessary to select a uniform window for all the instruments, given
that a specific pass band filter is proposed for each instrument, with consideration
given to their respective work frequency range. Table 1 illustrates the range of
each instrument and the period from the slowest frequency, which must be no
greater than half of the selected window.
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As can be observed, the majority of the values are less than 15 ms, although
in certain instances, such as those pertaining to the viola, acoustic guitar, and
piano, the values exceed 30 ms. In order to accommodate these values, a window
of at least 100 ms is necessary. However, utilizing a longer window may result
in the loss of information from the other instruments. Consequently, the recom-
mendation proposed in reference to this matter is to set the window length at
40 ms, with the range from the filter for each instrument corresponding to its
respective range of operation.

Table 1. Frequency ranges of instruments [9,11].
Instrument F. Min (Hz) F.Max (Hz) Signal period (ms)

Cello 65 1000 15.3846
Clarinet 125 2000 8.0000
Flute 250 3500 4.0000
Acoustic Guitar 20 5000 50.0000
Electric Guitar 80 500 12.5000
Piano 27 5000 37.0370
Saxophone 110 2000 9.0909
Trumpet 165 1200 6.0606
Violin 196 3000 5.1020
Viola 130 1000 7.6923
Percussion 30 5000 33.3333

Filter signal
T T
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Amplitude
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Fig. 3. After-filtered viola audio signal.

Fig. 3 presents an illustration of the signal subsequent to filtration, which
correlates with the signal depicted in Fig. 2. Upon examination of both figures,
the impact of the filtration process on the audio signal of the instrument becomes
evident.

2.2 Feature Extraction

In the audio signal analysis is usual to use the short-time Fourier Transform,
which main idea is to consider the changes in frequency in small periods of
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time [12], to this it is needed to select the length of those periods, for this case
are 40ms and a window function which is multiply for the filter signal to obtain
the frequency information. This window shifts across the time and compute the
Fourier transform for each resulting window [12] . Part of this process is to select
the overlap, which means how much advance the window in the time, for example,
the first window is [0ms, 40ms] and the second will be [20ms, 60ms] with overlap
of 50% and with overlap of 75% the second window will be [10ms, 50ms].

For each time frame, it is possible to obtain a spectral vector with coefficients
associated with a time position. This allows a two-dimensional representation of
the squared magnitude of the STEFT call spectogram to be plotted, where the
horizontal axis represents time and the vertical axis represents frequency [12].

Log-Mel Spectrogram. The Log-Mel spectrogram is a representation that
condenses timbre and pitch information computed from the above spectrogram
by grouping STFT bins into overlapping frequency bands that approximate hu-
man pitch perception [10]. The number of bands is significantly less than STFT,
which is also an advantage when selecting them as parameters.

Mel Spectrogram Mel Spectrogram
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(a) Mel Spectrogram for viola. (b) Mel Spectrogram for saxophone.

Fig. 4. Mel spectrograms for viola and saxophone for the note A3.

As a result, these parameters give figures as can be seen in Figures 4a and
4b, which are the Mel spectograms for the note A3 for viola and saxophone. As
can be seen, they are quite similar, but there are some notable differences in the
frequencies from 1024 Hz to 4096 Hz.

Mel Frequency Cepstral Coefficients (MFCCs). The Mel Frequency Cep-
tral Coefficients are a compact representation of the shape and spectral envelope
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of an audio signal, calculated from the Mel spectogram by taking the logarithm
of the magnitude of each resulting band and calculating the discrete cosine trans-
form over the resulting band. The resulting real part is similar to the real part of
the Fourier transform. The fascinating thing about this parameter is that a small
subset contains the most important information, so usually between thirteen and
twenty parameters are considered. In this work, it is used twenty parameters.

Chromagram. The Chromagram is a magnitude spectogram similar to the
MEL spectogram, the main difference being that the MEL spectogram considers
the frequency range, as the Chromagram defines twelve different pitch classes,
where each corresponding to a particular frequency range [12]. For example, note
A5 has a range of [427.47, 452.89]. Figures 5a and 5b show the chromagram for
note A3 on viola and saxophone. It can be seen that both are quite similar,
although there are some differences on the note B in the case of the viola.

Chromagram 10 Chromagram 10
B B
A 0.8 A 0.8
gG 0.6 2C 0.6
e e
€T IF
D 0.2 D 0.2
C C
0 015 03 045 06 075 09 1.1 0 0150304506 075 09 1.1
Time [s] Time [s]
(a) Chromagram for viola. (b) Chromagram for saxophone.

Fig. 5. Chromagram for note A3 for viola and saxophone.

Harmonic Percussive Index (HPI). Musical instruments can be divided
into percussive and melodic instruments, the former being characterized by the
fact that they can generate vibrations on their own, whereas harmonics require
a string or wind to vibrate. This characteristic gives rise to the harmonic and
percussive index, which is calculated by separating the harmonic and percussive
parts for each window [5]. Figures 6a and 6b show the separation of the harmonic
and percussive parts of a viola and a drum. It can be seen that the drum has a
lot of percussive energy, while the viola has almost zero.

Spectral Contrast. Spectral contrast characteristics are an important param-
eter because they provide a representation of the spectral characteristics of the
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Harmonic Percussive Index (HPT)
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Fig. 6. Harmonic percussive index for viola and drums.

sound by highlighting the differences between peak and valley energies in differ-
ent frequency bands. This method emphasizes the relative distribution of spectral
energy, which can vary significantly between different types of musical instru-
ment [5]. Figures 7a and 7b show the spectral contrast for note A3 on viola and
saxophone. It can be seen that both are quite similar, although there are some
differences, specially considering that the time scale are different.
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(a) Spectral Contrast for viola. (b) Spectral Contrast for saxophone.

Fig. 7. Spectral Contrast for note A3 for viola and saxophone.
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Once all the parameters have been calculated, it is necessary to organize
them into a dataset in order to be able to use this information in any model.
For each window calculated for each audio signal, a vector is generated with the
MFCC vector, the MEL spectogram, the chromogram and the spectral contrast
as concatenated vectors and the HPI, so that for each case there is a vector of
169 values.

2.3 Support Vector Machines

The problem of instrument recognition is studied with different approaches as
RNN, CNN, RNN, CRNN and SVM. For this paper, the selected model was SVM
because this allows to quickly train a diversity of models with some variations,
like filter or not the signal, change the type of model, the size of data set, etc.
Some of these variations are considering in Fig. 8, this scheme mentions some
considerations to take in count:

— Sample extraction. The datasets contain a lot of information, which is
useful for training robust models with deep learning, but for this particular
case, it is necessary to take a sample of all the data in order to optimize the
training. In this case, two samples are taken, one with 10% and the other
with 2.5%.

— Sample balancing. In most cases, the datasets do not have the same num-
ber of cases from each class, which can lead to poor results.For this, it is
necessary to consider oversampling or under sampling in order to have the
same number of cases for each class. In this case, the dateset is under sam-
pled. For this, the number of cases for each class is the same as the percentage
selected for the sample of the smallest class.

— Split data. The data set used to train the model is split into two sets, one
for training the model and one for testing it. Some common percentages are
80% and 20%. Since the number of data in this work, the chosen percentages
are 85% and 15%.

— Parameter selection. The dataset extracted by this methodology have
169 parameters, which is a high number and increase the time to tain the
model, for that is necessary to use some technique that reduce the number
of parameters on option is Recursive Elimination Feature, but as the name
says, it probes the parameters in the model recursively, which leads a hight
computational cost. Another option available is the SelectKBest function in
Python, which can select the best parameters using statistical techniques
such as ANOVA or Mutual Information (MI).

— Kernel for training the model. SVM can be trained considering different
kernel functions whose are related with how to measure the distance and the
expected behaviour of the data. In this case, with linear data, the linear
kernel is the best option, while with complex data, such as audio, the radial
basis function kernel is a great option.

— Evaluation of the model. A train model needs to be evaluated to see how
close it is to the test data. To do this, the confusion matrix is a good option
because it gives information about the accuracy for each class.
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Fig. 8. Proposed methodology to train the SVM.

After considering these factors, different models are trained and evaluated us-
ing selected combinations of features. This study investigates model performance
under various configurations of kernel, feature selector, and the application of
filtering techniques.

3 Results

The proposed methodology is implemented for two datasets, the first one is the
dataset IRMAS, which is a polyphonic dataset with eleven class, for this work
only nine were selected: cello (cel), clarinet (cla), flute (flu), acoustic guitar (gac),
electric guitar (gel), piano (pia), saxophone (sax), trumpet (tru), violin (vio) [3].
The second is the Philarmonia dataset, a monophonic dataset that has twenty
classes, only nine of which are used in this work: cello (cel), clarinet (cla), flute
(flu), acoustic guitar (gac), percussion (gel), saxophone (sax), trumpet (tru),
violin (vio) and viola (viola) [13]. For each data set, all audio signals of each
class were analyzed and their features were extracted with a window length of
40 ms and an overlap of 50%, i.e., 20 ms. The sizes of the datasets were 784,802 x
169 for the IRMAS dataset and 552,051 x 169 for the Philharmonia dataset. As
mentioned above, the data sets are huge and the computational cost of training
the model is high. For this, after sampling the dataset with 10% and 2.5% and
under sampling the classes, the remaining datasets are shown in Table 2.

Table 2. Samples for balanced datasets.
Dataset 2.5 % 10 %
TIRMAS 13077 52308
Philharmonia 2673 10710

It is now feasible to train models with reduced data sets, which enables the
evaluation of various factors such as the kernel type, feature selector, and the
number of parameters.

As shown in Table 3, a comprehensive overview of different configurations is
provided. The results indicate that, in both datasets, using only 2.5% of the data,
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the optimal kernel is the linear one, and the most effective feature selector is f
classif. This trend is especially evident in the IRMAS dataset, where a significant
drop in accuracy is observed when switching the feature selector. In contrast,
under the same conditions, the Philarmonia dataset yields similar results when
using the RBF kernel, indicating a more stable behavior with respect to kernel
changes.

Moreover, as illustrated in Table 3, the implementation of filters results in a
substantial enhancement in performance. The employment of the optimal kernel
(linear) and feature selector (f class) for both data sets has been demonstrated
to result in enhanced accuracy when utilizing the filters. The Irmas dataset
demonstrated an accuracy of 0.84% for the 2.5% sample, while the Philharmo-
nia Dataset exhibited an accuracy of 0.75% for the same percentage. Conversely,
when filters are not utilized, the accuracies decrease to 0.21% and 0.65%, respec-
tively, indicating a substantial decline in performance.

Table 3. Model results with different data configurations by changing the kernel,
feature selector and number of features (NF).

Dataset % Filters Accuracy Kernel Feature Selector NF

IRMAS 10 v 0.72 Lineal f classif 10
IRMAS 2.5 v 0.75 Lineal f classif 10
IRMAS 2.5 v 0.21 Lineal  mutual info classif 10
IRMAS 25 0.26 Lineal f classif 10
IRMAS 2.5 v 0.23 RBF mutual info classif 10
IRMAS 2.5 v 0.21 RBF mutual info classif 5
PHIL 10 v 0.83 Lineal f classif 10
PHIL 2.5 v 0.84 Lineal f classif 10
PHIL 2.5 v 0.68 Lineal  mutual info classif 10
PHIL 2.5 0.65 Lineal f classif 10
PHIL 2.5 v 0.68 RBF mutual info classif 10
PHIL 2.5 v 0.70 RBF mutual info classif 5

Another interesting comparison is the effect that dataset size has on model
accuracy. As shown, the accuracy is 0.72 for the IRMAS dataset and 0.83 for
the Philharmonia dataset when 10% of the data is used. With only 2.5% of the
data, the accuracies are 0.75% and 0.84%, respectively. The model trained with
filtered signals, lineal kernel and f classif feature selector, has performed well, but
to prove that this is true in other circumstances, another sample of 5% is taken
from each complete dataset, this to prepare a cross validation with different
percentages from the new datasets. Table 4 shows the results from samples of
10%, 5% and 1% of the news datasets. It can be seen that the IRMAS dataset has
less accuracy with less data, since the Philarmonia dataset has similar values.
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Table 4. Samples for balanced datasets.
Dataset Sample Train 10% 5% 1%

IRMAS 10 0.72 072 0.71 0.73
IRMAS 2.5 0.75 075 0.7 0.65
PHIL 10 0.83 0.84 0.86 0.84

PHIL 2.5 0.84 0.83 0.83 0.83

Table 5 shows a compendium of other test models that have been computed,
where it can be seen that the parameters used are MFCC or part of the MEL
spectrum with some cases of spectral contrast. None of these use the chromatic
diagram and only one uses the HPI.

Table 5. Results of models with different data configurations The selected char-
acteristics are listed.
Dataset TRMAS IRMAS IRMAS PHIL PHIL PHIL

Percentage 10 2.5 2.5 10 2.5 2.5
Accuracy 0.72 0.75 0.26 0.83 0.84 0.65
Filters Vv v v v

Features MFCC3 MFCC3 MFCC1 MFCC.3 MFCC.3 MFCC 3
MFCC5 MFCC4 MFCC3 MFCC4 MFCC4 MFCCH4
MEL 1 MFCC 5 MFCC 4 MFCC.5 MFCC.5 MEL1
MEL 2 MEL 1 MEL 71 MFCC6 MFCC6 MEL 2
MEL 67 MEL 2 MEL 73 MFCC.7 MFCC_7 MEL 3
MEL 69 MEL 67 MEL 75 MEL 1 MEL 1 MEL 127
MEL 71 MEL 69 MEL 76 MEL 2 MEL 2 MEL 128
MEL 72 MEL 71 MEL 77 MEL 3 MEL 3 CONTR 1
MEL 73 MEL 72 MEL 78 MEL 4 MEL 4 CONTR 7
CONTR 7 CONTR 7 MEL 79 CONTR 7 CONTR 7 HPI

4 Conclusions

The findings presented above, along with the data in Table 5, highlight the crit-
ical role of filtering in achieving optimal results and reducing training time. The
application of filtering techniques consistently improves model performance. In
the absence of such filtering, the resulting data quality is significantly compro-
mised.

Among the features evaluated, MEL spectrograms and MFCCs proved to be
the most effective, enhancing classification accuracy across a range of models.
These parameters consistently delivered strong results. In contrast, the chroma-
gram and Harmonic Percussive Index (HPI) were found to be less impactful. The
HPI was excluded in most models, though an interesting exception occurred with
a support vector machine (SVM) trained on unfiltered data from the Philhar-
monia dataset, where the HPI contributed to an accuracy of 65%. This suggests
that while the HPI is generally less useful, it may still offer value in specific con-
texts. Overall, the results underscore the importance of careful feature selection
and the significant benefits of preprocessing in improving model performance.
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